Следите за нашими новостями!
 
 
Наш сайт подключен к Orphus.
Если вы заметили опечатку, выделите слово и нажмите Ctrl+Enter. Спасибо!
 


Экологически безопасное биотопливо начинает угрожать дикой природе

Использование биотоплива, например этанола (этилового спирта) или дизельного топлива (биодизеля), полученного из специально выращенных растений, обычно рассматривают как важный шаг к сокращению выбросов углекислого газа (СО2) в атмосферу. Конечно, при сжигании биотоплива углекислый газ попадает в атмосферу совершенно так же, как и при сжигании ископаемого топлива (нефти, угля, газа). Разница в том, что образование растительной массы, из которой было получено биотопливо, шло за счет фотосинтеза, то есть процесса, связанного с потреблением СО2. Соответственно, использование биотоплива рассматривается как «углерод-нейтральная технология»: сначала атмосферный углерод (в виде СО2) связывается растениями, а потом выделяется при сжигании веществ, полученных из этих растений. Однако стремительно расширяющееся производство биотоплива во многих местах (прежде всего в тропиках) ведет к уничтожению природных экосистем и утере биологического разнообразия.

Двигатели, работающие на биотопливе, используют энергию солнечного света, запасенную растениями. Энергия ископаемого топлива — это на самом деле тоже когда-то давно (десятки и сотни миллионов лет тому назад) связанная энергия солнечного света, а выделяющийся при сжигании ископаемого топлива углекислый газ когда-то был изъят из атмосферы (и вод океана) растениями и цианобактериями. Казалось бы, биотопливо ничем не отличается от обычного ископаемого топлива. Но разница есть, и определяется она временной задержкой, лагом между связыванием СО2 в ходе фотосинтеза и выделением его в процессе сжигания углеродсодержащих веществ. Если этот лаг очень большой (как в случае использования горючих ископаемых), то состав атмосферы мог за это время существенно измениться. Кроме того, если связывание углекислого газа происходило в течение очень длительного времени, то высвобождение происходит очень быстро. В случае же использования биотоплива временной лаг совсем небольшой: месяцы, годы, для древесных растений — десятилетия. Поэтому биотопливо и называют часто «углерод-нейтральным».

При всех плюсах использования биотоплива быстрое увеличение его производства чревато серьезными опасностями для сохранения дикой природы, особенно в тропиках. В последнем номере журнала Conservation Biology появилась обзорная статья (пока еще только в предварительной, онлайновой версии), посвященная вредным последствиям использования биотоплива. Ее авторы, Марта Грум (Martha A. Groom), работающая в рамках Междисциплинарной программы наук и искусств Вашингтонского университета в Ботелле (США), и ее коллеги Элизабет Грэй и Патрисия Таунсенд, проанализировав большой массив литературы, предложили ряд рекомендаций по тому, как сочетать получение биотоплива с минимизацией отрицательного воздействия на окружающую среду, с сохранением биоразнообразия окружающих природных экосистем.

Так, по мнению Грум и ее коллег, вряд ли заслуживает одобрения принятая во многих странах, и прежде всего в США, практика использования кукурузы как сырья для получения этанола. Культивирование кукурузы само по себе требует большого количества воды, удобрений и пестицидов. В результате, если учесть все затраты на выращивание кукурузы и производства из нее этанола (они ведь тоже связаны с потреблением энергии, со сжиганием топлива), то окажется, что в сумме количество СО2, выделяющегося при изготовлении и использования такого биотоплива, почти такое же, как при использовании традиционного ископаемого топлива! Для этанола из кукурузы коэффициент, оценивающий выделение парниковых газов на определенный энергетический выход (в кг СО2 на мегаджоуль,106 джоулей, полученной энергии), равен 81–85. Для сравнения, соответствующий показатель для бензина (из ископаемого топлива) составляет 94, а для обычного дизельного топлива — 83. При использовании сахарного тростника результат уже существенно лучше — 4–12 кг СО2/МДж.

Но настоящий положительный скачок наблюдается при переходе к использованию многолетних трав, например одного из видов дикого проса — так называемого проса прутьевидного (Panicum virgatum), обычного растения высокотравных прерий Северной Америки. Благодаря тому, что значительная часть связанного углерода запасается многолетними травами в их подземных органах, а также накапливается в органическом веществе почвы, территории, занятые этими высокими (порой выше человеческого роста) травами, функционируют как места связывания («стока») атмосферного СО2. Показатель эмиссии парниковых газов при получении биотоплива из проса характеризуется отрицательной величиной: –24 кг СО2/МДж (то есть СО2 становится меньше в атмосфере).

Еще лучше удерживает углерод многовидовой растительный покров прерий. Показатель эмиссии парниковых газов в этом случае также отрицательный: –88 кг СО2/МДж. Правда, скорость прироста (продуктивность) таких многолетних трав относительно низкая. Поэтому и количество топлива (выраженное в количестве бензина в литрах), которое может быть получено с естественной прерии, составляет всего около 940 л/га. Для проса эта величина достигает уже 2750–5000, для кукурузы — 1135–1900, а для сахарного тростника — 5300–6500 л/га.

Эффективным оказывается и использование быстро растущих деревьев, например разных тополей и ив. В целом ряде районов земного шара, прежде всего в тропиках, широкое внедрение культур, используемых для получения биотоплива, связано с вырубкой лесов. В Индонезии и в Малайзии огромные территории, еще недавно занятые дождевыми тропическими лесами — экосистемами, характеризующимися не только очень высокой первичной продукцией (cм. также: Primary production), но и максимальным видовым разнообразием растений и животных, — превращены теперь в плантации масличной пальмы и других растений, пригодных в качестве сырья для биотоплива. В Бразилии плантации сахарного тростника замещают интереснейшие, также характеризующиеся высоким видовым разнообразием, болотные экосистемы. Особенно интенсивно этот процесс идет в последние годы после подписания соглашения между Бразилией и США о крупных поставках этанола.

Очевидно, что замещая ископаемое топливо и снижая таким образом рост СО2 в атмосфере, биотопливо на самом деле может угрожать многим природным экосистемам, прежде всего тропическим. Дело, конечно, не в самом биотопливе, а в неразумной, «недружественной по отношению к природе» политике его производства, в уничтожении богатых видами природных экосистем и заменой их крайне упрощенными экосистемами сельскохозяйственных угодий. Большие надежды авторы возлагают на использование в качестве сырья для биотоплива массы микроскопических планктонных водорослей, которые можно выращивать в прудах (порой даже с солоноватой водой) или в специальных биореакторах. Выход полезной продукции на единицу площади при этом значительно выше, чем в случае наземной растительности.

В заключение статьи авторы формулируют ряд рекомендаций, которые надо учитывать, чтобы минимизировать вред, наносимый природным экосистемам при получении биотоплива. В частности, они настаивают на том, чтобы в каждом конкретном случае рассчитывались затраты и выгоды на всех этапах производства и использования того или иного биотоплива в том или ином конкретном месте. Следует также минимизировать площадь, занятую культурами, выращиваемыми для получения биотоплива, стараться использовать для этого брошенные земли, отвалы производства, места свалок и т. п. Предпочтение должно отдаваться многолетним местным растениям. Надо опасаться использования видов, которые могут стать инвазийными (см.: Invasive species), то есть выйдут из-под контроля и станут массовыми в природных сообществах.

В любом случае, необходимо оценить тот риск, который возникает для природных экосистем при культивировании растений, используемых в качестве сырья для биотоплива.

Источник: M. J. Groom, E. M. Gray, P. A. Townsend. Biofuels and biodiversity: Principles for creating better policies for biofuel production // Conservation Biology . 2008. doi:10.1111/j.1523-1739.2007.00879.x.

Статья опубликована на сайте "Элементы" [Оригинал статьи]

Имя
Email
Отзыв
 
Спецпроекты
Варлам Шаламов
Хиросима
 
 
«Валерий Легасов: Высвечено Чернобылем. История Чернобыльской катастрофы в записях академика Легасова и современной интерпретации» (М.: АСТ, 2020)
Александр Воронский
«За живой и мёртвой водой»
«“Закон сопротивления распаду”». Сборник шаламовской конференции — 2017